AGNES-SMOTE: An Oversampling Algorithm Based on Hierarchical Clustering and Improved SMOTE
نویسندگان
چکیده
منابع مشابه
Oversampling for Imbalanced Learning Based on K-Means and SMOTE
Learning from class-imbalanced data continues to be a common and challenging problem in supervised learning as standard classification algorithms are designed to handle balanced class distributions. While different strategies exist to tackle this problem, methods which generate artificial data to achieve a balanced class distribution are more versatile than modifications to the classification a...
متن کاملGeometric SMOTE: Effective oversampling for imbalanced learning through a geometric extension of SMOTE
Classification of imbalanced datasets is a challenging task for standard algorithms. Although many methods exist to address this problem in different ways, generating artificial data for the minority class is a more general approach compared to algorithmic modifications. SMOTE algorithm and its variations generate synthetic samples along a line segment that joins minority class instances. In th...
متن کاملRBM-SMOTE: Restricted Boltzmann Machines for Synthetic Minority Oversampling Technique
The problem of imbalanced data, i.e., when the class labels are unequally distributed, is encountered in many real-life application, e.g., credit scoring, medical diagnostics. Various approaches aimed at dealing with the imbalanced data have been proposed. One of the most well known data pre-processing method is the Synthetic Minority Oversampling Technique (SMOTE). However, SMOTE may generate ...
متن کاملAddressing data complexity for imbalanced data sets: analysis of SMOTE-based oversampling and evolutionary undersampling
In the classification framework there are problems in which the number of examples per class is not equitably distributed, formerly known as imbalanced data sets. This situation is a handicap when trying to identify the minority classes, as the learning algorithms are not usually adapted to such characteristics. An usual approach to deal with the problem of imbalanced data sets is the use of a ...
متن کاملSMOTE for Regression
Several real world prediction problems involve forecasting rare values of a target variable. When this variable is nominal we have a problem of class imbalance that was already studied thoroughly within machine learning. For regression tasks, where the target variable is continuous, few works exist addressing this type of problem. Still, important application areas involve forecasting rare extr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Programming
سال: 2020
ISSN: 1058-9244,1875-919X
DOI: 10.1155/2020/8837357